Manuel F. CASANOVA, Aly FARAG, Ayman EL-BAZ, Meghan MOTT, Hossam HASSAN, Rachid FAHMI, Andrew E. SWITALA




Мануел Ф. КАЗАНОВА1, Али ФАРАГ 2,
ЕЛ-БАЗ 2, МеганМОТ 1, Хосам ХАСАН 2,Рахид ФАХМИ 2, Ендрју Е. СВИТАЛА 1

1 Оддел за психијатрија и бихевиорални науки
Универзитет Луисвил, Луисвил, Кентаки
2 Оддел за електро и компјутерско инженерство 
Универзитет Луисвил, Луисвил, Кентаки 40292




Ayman EL-BAZ2 Meghan MOTT1HossamHASSAN2,Rachid FAHMI2Andrew E. SWITALA1


1 Department of Psychiatry and Behavioral Sciences
University of Louisville, Louisville, KY 
2 Department of Electrical and Computer Engineering
University of Louisville, Louisville, KY 40292







Аутизмот е невроразвојно нарушување кое го карактеризираат нарушувања во социјалната интеракција, јазикот и опсегот на интереси. Понови студии сугерираат дека мозоците на аутистичките пациенти имаат зголемен број на миниколони. Ова откритие помага да се објасни присуството на макроенцефалија или зголемување на мозокот кај значителен број пациенти со аутизам. Промените на големината на мозокот и гирификацијата обично се истовремени. Во оваа студија имплементиравме алгоритам што го мери гирификацискиот прозорец во мозоците на 23 постмортем аутистички и 16 постмортем контролни мозоци. На  ниво на доверба од 85% алгоритмот точно класифицира 22/23 аутистички, стапка на точност 0,96, и 15/16 контролни, стапка на точност 0,94. Претходните структурални студии на невровизуелизација кај аутизмот ги нагласуваа волуметриските мерки. Овие методологии се многу чувствителни на сегментирање на артефакти, нарушени од буката на претставата, недостатокот на силни рабови и поделбата на боја/ткиво меѓу различни структури. Сегашната студија нуди нов приод кон класификацијата на аутизам базирана врз структурната МНР. 
Откритието му носи важност на клиничкото претставување на аутизмот бидејќи зголемената гирификација го намалува гиралниот прозорец и ја ограничува поврзаноста во корист на кусите кортикортикални влакна.


Autism is a neurodevelopmental disorder characterized by impairments in social interaction, language, and range of interests. Recent studies suggest that the brains of autistic patients have an increased number of minicolumns. This finding helps explain the presence of macroencephaly or increased brain size in a significant proportion of autistic patients. Changes in brain size and gyrification are usually concurrent. In this study we have implemented an algorithm that measured the gyrification window in the brains of 23 postmortem autistic and 16 postmortem control brains. At the 85% confidence level the algorithm correctly classified 22/23 autistics, a 0.96 accuracy rate, and 15/16 controls, a 0.94 accuracy rate. Previous structural neuroimaging studies in autism have emphasized volumetric measures. These methodologies are very sensitive to segmentation artifacts, being compromised by image noise, lack of strong edges, and sharing of color/texture among different structures. The present study offers a new approach to the classification of autism based on structural MRI. 
The finding bears relevance to the clinical presentation of autism as increased gyrification reduces the gyral window and constrains connectivity in favor of short corticocortical fibers.


Клучни зборови: аутизам, магнетна нуклеарна резонанца (МНР), неокортекс, миниколумни


Key words: Autism, magnetic resonance imaging (MRI), neocortex, minicolumns

Adresa za separatite:


Address requests for reprint to:

Manuel F. Casanova


Manuel F. Casanova

University of Louisville
Department of Psychiatry
500 South Preston St Bldg 55A Ste 217
Louisville, KY 40292, USA 


University of Louisville
Department of Psychiatry
500 South Preston St Bldg 55A Ste 217
Louisville, KY 40292, USA 

Full Text:



Piven J, Arndt S, Bailey J, Havercamp S, Andreasen NC, Palmer P. An MRI study of brain size in autism. Am J Psychiatry 1995; 152: 1145–1149.

Davidovitch M, Patterson B, Gartside P. Head circumference measurements in children with autism. J Child Neurol 1996; 11: 389–393.

Lainhart JE, Piven J, Wzorek M, et al. Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 1997; 36: 282–290.

Fombonne E, Rogé B, Claverie J, County S, Frémolle J. Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999; 29: 113–119.

Yeargin-Allsop M, Rice C, Karapurkar T, Doernberg N, Boyle C, Murphy C. Prevalence of autism in a US metropolitan area. JAMA 2003; 289: 48–55.

Tidmarsh L, Volkmar FR. Diagnosis and epidemiology of autism spectrum disorders. Can J Psychaitry 2003; 48: 517–525.

Minshew NJ, Payton JB. New perspectives in autism, part II: the differential diagnosis and neurobiology of autism. Curr Probl Pediatr 1988; 18: 613–694.

Bolton P, Macdonald H, Pickles A, et al. A case-control family history study of autism. J Child Psychol Psychiatry 1994; 35: 877–900.

Stevens MC, Fein DA, Dunn M, et al. Subgroups of children with autism by cluster analysis: a longitudinal examination. J Am Acad Child Adolesc Psychiatry 2000; 39: 346–352.

Kemper TL, Bauman ML. The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 1993; 11: 175–187.

Egaas B, Courchesne E, Saitoh O. Reduced size of corpus callosum in autism. Arch Neurol 1995; 52: 794–801.

Guerin P, Lyon G, Barthélémy C, et al. Neuropathological study of a case of autistic syndrome with severe mental retardation. Dev Med Child Neurol 1996; 38: 203–211.

Williams RS, Hauser SL, Purpura, DP, DeLong GR, Swisher CN. Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior. Arch Neurol 1980; 37: 749–753.

Ritvo ER, Freeman BJ, Scheibel AB. Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry 1986; 143: 862–866.

Courchesne E, Karns CM, Davis HR, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001; 57: 245–254.

Carper RA, Moses P, Tigue ZD, Courchesne E. Cerebral lobes in autism: early hyperplasia and ab¬normal age effects. Neuroimage 2002; 16: 1038–1051.

Herbert MR, Ziegler DA, Makris N, et al: Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 2004; 55: 530–540.

Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2003; 2: 255–267.

Belmonte MK, Baron-Cohen S. Normal sibs of children with autism share negative frontal but not positive sensory abnormalities: preliminary evidence from fMRI during processing of visual distractors. Soc Neurosci Abstr 2004; 30: 582.10.

Brock J, Brown CC, Boucher J, Rippon G. The temporal binding deficit hypothesis of autism. Dev Psychopathol 2002; 14: 209–224.

Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 2004; 127: 1811–1821.

Belmonte MK, Yurgelun-Todd DA. Functional anatomy of impaired selective attention and compensatory processing in autism. Cogn Brain Res 2003; 17: 651–664.

Casanova MF, Van Kooten IA, Switala AE, et al. Minicolumnar abnormalities in autism. Acta Neuropathol (Berl) 2006; 112: 287–303.

Schumann CM, Buonocore MH, Amaral DG. Magnetic resonance imaging of the post-mortem autistic brain. J Autism Dev Disord 2001; 31: 561–568.

Farag A, El-Baz A, Gimel’farb G. Precise image segmentation of multimodality imaging. IEEE Trans Image Process 2006; 15: 952–968.

El-Baz A, Farag A, Gimel’farb G. MGRF controlled stochastic deformable model. Kalviainen H, Parkkinen J, Kaarna A, eds. In: Image analysis. Berlin: Springer, 2005: 1138–1147.

El-Baz A, Farag A, Gimel’farb G: Stochastic deformable model. Clocksin W, Fitzgibbon A, Torr P, eds. In: Proceedings of the British machine vision conference. London: BMVA, 2005: 230–239.

Farag A, El-Baz A, Gimel’farb G: Density estimation using modified expectation maximization for a linear combination of Gaussians. In: 2004 International conference on image processing: proceedings. Piscataway, NJ: IEEE Press, 2004: 194–197.

Geusebroek M, Burghouts GJ, Smeulders AWM. The Amsterdam library of object images. Int J Comput Vis 2005; 61: 103–112.

Sethian JA. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. 2nd ed. Cambridge: Cambridge University Press, 1999.

Sabry H. and Farag A. Accurate tracking of monotonically advancing fronts. Fitzgibbon A, Taylor CJ, LeCun Y, eds. 2006 IEEE Computer Society conference on computer vision and pattern recognition. Los Alamitos, Calif: IEEE Computer Society, 2006: 355–362.

Prothero JW, Sundsten JW. Folding of the cerebral cortex in mammals. Brain Behav Evol 1984; 24: 152–167.

Casanova MF, Buxhoeveden DP, Switwala AE, Roy E. Neuronal density and architecture (gray level index) in the brains of autistic patients. J Child Neurol 2002; 17: 515–521.

Bailey A, Phillips W, Rutter M. Autism: toward an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J Child Psychol Psychiatry 1996; 37: 39–126.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Article Metrics Graph

No metrics found.


  • There are currently no refbacks.

JSER ONLINE is licensed under a Creative Commons; 2.5 Macedonia License.